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Various Finite Element modeling concepts and linear analyses of 3D regular cellular solids
(lattice structures) with relative densities ranging from 10% to 20% are presented.
Continuum element based models and beam element based models are employed, the
latter with and without an adaptation of stiffness in the vicinity of the vertices. Space filling
unit cell models are used for a constitutive characterization of four different structures in
terms of density and directional dependence of their Young’s moduli. Finite structure
models of different size are simulated for investigating the influence of free surfaces and
being compared to results of uniaxial compression tests of samples fabricated by two
different Rapid Prototyping techniques. © 2005 Springer Science + Business Media, Inc.

1. Introduction

Highly porous, cellular solids form the basis of many
biological and engineering structures. They gain in-
creasing importance especially in the growing field of
scaffold engineering [1]. The main advantages of cel-
lular solids are their high specific stiffness and high
specific strength as well as the possibility of tailoring
their properties by designing appropriate cell architec-
tures. The latter requires knowledge of the relationship
between their architecture and their overall properties.
Several analytical and numerical approaches have been
developed. Analytical models based on beam theory
have been derived [2] giving the effective mechan-
ical properties as a function of the structures’ rela-
tive density. Various analytical and numerical tech-
niques considering the effective elastic behavior of
low density regular cellular solids are presented in [3,
4]. Modeling approaches based on tetrakaidecahedral
unit cells have been widely used for studying cellular
structures. Analytical methods [5] and Finite Element
simulations based on beam elements [6] are used for
analyzing the effective stiffness of open cell metal-
lic foams with tetrakaidecahedral unit cells. In [6] a
comparison of numerically, analytically, and experi-
mentally obtained results is reported. In [7] the elas-
tic moduli and initial yield strength of hollow-sphere
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arrangements are analyzed using continuum element
based Finite Element simulations. Analytical and nu-
merical analysis of the effective stress-strain behav-
ior of 2D model foams in the finite strain regime are
presented in [8]. With respect to closed cell metallic
foams a comprehensive treatise of simulation methods
on both the micro and the macro scale can be found in
[9-11].

The present study is embedded in a larger project
concerned with cellular solids. The general aim is
to gain knowledge about the mechanical behavior of
cellular structures which are designed, fabricated by
rapid prototyping, experimentally characterized [12,
[13], and computationally simulated [14]. This pa-
per deals with numerical simulations of 3D regular
open cell structures by means of the Finite Element
Method (FEM). Various modeling approaches are in-
troduced to analyze four generic 3D structures. The
structures are chosen to cover a wide range of dif-
ferent connectivities (number of vertices over number
of struts), presumably leading to different deformation
mechanisms. Fig. 1 shows the base cells of the inves-
tigated structures, Simple Cubic (SC), Gibson Ashby
(GA), Body Centered Cubic (BCC), and Reinforced
Body Centered Cubic (RBCC). The base cells have
equal size, being build by struts with circular cross
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Figure 1 Base cells of the investigated structures, all of equal size and relative density of 10%.

sections. The strut diameter is constant within each
individual structure. By repeating these base cells in
the three principal directions periodic structures are
obtained. All structures are of cubic material symme-
try. The bulk material of the structures is a polymer
for which isotropic, linear elastic material behavior is
assumed.

Three different FEM modeling techniques are uti-
lized and their applicability is assessed with respect to
modeling cost and quality of the results. As a compu-
tationally cheap approach, higher order beam elements
are used for modeling the structures. Straightforward
discretization by beam elements is used as well as a
beam modeling approach adapting the stiffness and
the material distribution in the vicinity of the vertices.
Continuum element models are employed for highly
detailed analyses, being computationally much more
expensive and requiring high modeling effort.

The structures are treated as infinite and finite me-
dia, employing unit cell models and finite size models,
respectively. The latter are variable in size, as being
composed of a given number of base cells. Differences
of the modeling approaches are discussed and compa-
rability of the respective results is evaluated.

Constitutive characterization of the 3D cellular struc-
tures for the linear elastic regime is done by determi-
nation of the entire elasticity tensors using the unit cell
models from which the directional dependence of the
Young’s modulus is derived. The density dependence
of the Young’s modulus is described for varying struc-
tures and orientations.

Corresponding specimens are fabricated using two
different Rapid Prototyping techniques and being tested
by means of uniaxial compression. The extent of free
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surface effects is investigated by simulating finite sam-
ples of different size, and a comparison of computa-
tional predictions with experimental results is shown.

2. Finite element models

All numerical investigations are carried out by means of
the Finite Element package ABAQUS/Standard (Ver-
sion 6.4.3, HKS, Pawtucket, RI). In this section three
different FEM modeling techniques are presented.
Beam element based models are utilized for unit cell
analyses and for the simulation of finite samples. For
a highly detailed representation of the structures, con-
tinuum element based unit cell analyses are used. They
are taken as reference models to assess the applicability
of the beam element based models.

2.1. Beam element models

The beam element approaches employ 3D beam ele-
ments for modeling the structures. Timoshenko beam
elements with quadratic interpolation functions are
used to allow for bending and transverse shear deforma-
tions. At least four elements are used for discretization
of a single strut.

Beam element models are computationally cheap,
but straightforward modeling of a vertex by beam el-
ements suffers from two approximations. First, it does
not account for multiple volumes at overlapping do-
mains. Second, such models do not account for possi-
ble constraints in the vicinity of the vertices, caused by
the material aggregation in these domains. Thus, the
distribution of the material in the intersections of the



struts should be considered in terms of stiffness and
density.

To find the strut radius matching the desired relative
density of the model the material distribution in a vertex
is approximated by a sphere with a radius equal to the
strut radius. The connected cylindrical struts end at the
sphere’s surface which leave gaps and may create over-
laps. This approximation is used throughout this study
for vertices connecting more than two struts. The accu-
racy of this approximation depends on the complexity
of the vertices.

An adaptation of the stiffness in the vicinity of
the vertices is introduced by using very stiff elements
within a spherical domain around the vertices with a
radius equal to the strut radius. The “rigid” behavior is
achieved by setting the Young’s modulus 1000 times
higher the polymers’s Young’s modulus. This adapta-
tion is considered preferable for vertices connecting
four or more struts, but not for vertices connecting two
or three struts.

2.2. Continuum element models

Tetrahedron elements with quadratic interpolation
functions are employed for the continuum element
based approach. This has the advantage that all fea-
tures of the structures’ geometries are captured in high
detail. Unlike the beam element based models, the fil-
lets between the struts, which emerge during the rapid
prototyping process, are modeled by the continuum el-
ement approach. Furthermore, it is possible to study
highly resolved stress and strain fields in the vicinity of
the vertices. For all continuum element based models
the element edge length is not larger than 1/6 of the
strut diameter. Additional mesh refinement is done at
the vertices (element edge length not larger than 1/12
of the strut diameter). The choosen discretization al-
lows for an accurate representation of the deformation
patterns. Considerable modeling effort and the high
number of degrees of freedom, resulting in high com-
putational cost, set the limit of applicability and size
for the continuum element based models.

3. Structural models

In the previous section three different FEM modeling
techniques have been presented. This section deals with
two different approaches for representing the structures
as infinite or finite media, respectively. Treating the
structures as infinite media has the benefit that the me-
chanical behavior of the structures (except structural
stability) can be described by looking only at the pe-
riodically repeating part of the structures, resulting in
rather small numerical models. To achieve correspon-
dence to the experimental setup the entire specimens
are modeled as finite media, consequently, resulting in
larger numerical models.

3.1. Infinite medium models
All investigated structures exhibit spatial periodicity.
The mechanical behavior of a 3D infinitely repeated
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periodic structure can be described by modeling an ap-
propriate space filling 3D unit cell with proper bound-
ary conditions [15, 16]. Unit cells of different size and
shape may be chosen for each structure. Here, base
cells as shown in Fig. 1 are taken as representative
unit cells for the simulations with continuum elements.
For the beam element based models, struts which sit in
periodic faces, are modeled in one of the faces only.

Homogenization via a periodic microfield approach
is employed for analyzing the effective mechanical be-
havior of the infinite periodic arrangement under far
field mechanical loads. An FEM based homogeniza-
tion concept, also known as ‘macroscopic degrees of
freedom’ (concept of masternodes), is employed, e.g.
[15, 16]. Appropriate coupling of the degrees of free-
dom of the unit cell boundaries is applied to the FEM
model to achieve spatial periodicity of the deforma-
tion field. Far field mechanical loads are applied to the
masternodes. For the FEM modeling of the unit cells
the beam element based approach and the continuum
element based approach are used. A comparison of the
various FEM modeling techniques will be presented in
Section 5.

In order to characterize the structures by means of
their effective mechanical properties the entire overall
elasticity tensors of the structures are determined. For
the most general case this can be done by applying six
independent load cases to a unit cell model and assem-
bling the overall elasticity tensors from the mechanical
responses of the model. From the elasticity tensor the
Young’s modulus in any spatial direction can be com-
puted.

3.2. Finite medium models

To assess the comparability of the unit cell predictions
to experimentally obtained results, finite structures cor-
responding to test specimens (see Fig. 2) are analyzed
in addition to the unit cell simulations. By these models
free surface effects are captured and the load is applied
in a well defined way.

? [001]
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(cm)

Figure2 8x8x8 BCC test sample, fabricated by Digital Light Process-
ing.
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The top boundary conditions are chosen to repre-
sent a rigid plate, which remains parallel to the (001)
plane, otherwise it can move freely, and rotate around
the [001] axis. This is achieved by an appropriate cou-
pling of the top face nodes. Furthermore, all degrees of
freedom of the bottom face nodes are locked.

Beam element based FEM models are used to keep
the number of degrees of freedom in a feasible range.
Continuum element based FEM models of finite struc-
tures with reasonable mesh refinement are beyond com-
putational limits.

4. Rapid prototyping and experiments

The test specimens consist of 8 x8x8 base cells (see
Fig. 2), with the exception of GA, which consists of
4x4x4 base cells. Bottom and top plates allow for a
well-defined load application and a clear representation
of the boundary conditions in the finite sample FEM
models.

Two different Rapid Prototyping (RP) techniques
[12] were used for the fabrication of the physical pro-
totypes presented in this work, i.e. Digital Light Pro-
cessing (DLP) and Selective Laser Sintering (SLS).

DLP is a process based on polymerization of photo-
sensitive resins using a digital mirror device. By slicing
the volume model of the cellular solids into layers of
constant thickness, a series of bitmaps is generated.
These bitmaps are then projected onto the resin’s sur-
face. Where the bitmap is white, the resin will solidify.
Black regions of the bitmap leave the resin liquid. In
contrast to traditional stereolithography [17, 18] (which
uses an ultraviolet laser beam to cure the resin), DLP is
based on using visible light. Therefore special resins,
sensitive to visible light, have to be utilized [19].

SLS uses an infrared laser to fuse thermoplastic pow-
der particles. By selectively scanning the surface, the
outline of the object can be fused together. After one
layer of the object has been completed, the build plat-
form is coated with another powder layer and the pro-
cess is repeated. The Young’s modulus of the DLP
material (a blend of acrylates and epoxy-based resins)
was measured to be 2300 MPa, the polyamide powder
used for SLS structures exhibits a Young’s Modulus of
2400 MPa. The Poisson ratio for both types of materials
is assumed to be 0.3.

The utilized DLP system (Envisiontec Perfactory
Mini) allows to fabricate structures with high feature
resolution (pixel size 40 um) and good surface rough-
ness. Minimal wall thicknesses around 0.2 mm are eas-
ily achievable. Overhanging geometries can in most
cases be fabricated without using support structures. In
the case of cellular materials, such support structures
would be impossible to remove. SLS is able to fabri-
cate all overhanging geometries, but regarding feature
resolution (0.1 mm) and minimum wall thickness (0.4
mm) SLS is inferior to DLP. DLP as well as SLS of-
fer reasonably high build speeds. Several samples can
be built per day, thus enabling the fabrication of 4-5
samples of each geometry presented in this work.

The fabricated structures were tested using a Zwick
7250 universal testing machine. The samples were
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loaded in uniaxial compression, and force as well as
crosshead travel were recorded. In order to allow for
free movement of the samples in the plane perpendicu-
lar to the loading direction, one compression plate was
floating on steel balls.

5. Results

A number of simulations and analyses are performed
utilizing the modeling approaches introduced above.
The results are interpreted in terms of the elastic be-
havior. The approaches are compared among each other
as well as to experimental data.

For the unit cells, the entire elasticity tensors of the
various structures are predicted in order to character-
ize the constitutive behavior. For the finite samples, the
stiffness under uniaxial compression in various direc-
tions is simulated.

5.1. Density dependence of the Young's
modulus

The relation between the density and the Young’s mod-
ulus is discussed by recourse to beam element unit
cell models with straightforward beam modeling. Each
of the four different structures is investigated at rela-
tive densities of 10%, 12.5%, 15%, 17.5%, and 20%.
The density vs. Young’s modulus data are predicted
for three different directions, i.e. aligned with the cu-
bic base cell edge [001], along the surface diagonal
[011], and along the cube’s diagonal [111]. For each
structure and in each direction the data are fitted by the
exponential regression function,

E*(¢)
E: =C prelﬂ(@,

)]

according to [2], where p is the relative density, E; is
the Young’s modulus of the bulk polymer, and E*(¢)
is the effective Young’s modulus of the structure. S(¢)
denotes the density exponent and ¢ is the considered
direction. The resulting density exponents are summa-
rized in Table I. For the factor of proportionality, C, a
wide scatter between 0.1 and 0.6 is found. Analyzing
the many different influences on that factor is beyond
the scope of this study. However, the validity of the
exponent data holds, and will be discussed in the fol-
lowing.

It is well known, that the value of the density ex-
ponent depends on the governing deformation mech-
anisms in the considered directions [2, 3, 12]. For
structures and loading directions, where the local de-
formation of the struts is stretching or shearing, the

TABLE I Density exponent for different structures and different
directions in the relative density range between 10% and 20%

Structure [001] [011] [111]
SC 1.00 1.83 1.85
GA 1.98 1.74 1.76
BCC 1.03 1.02 1.01
RBCC 1.01 1.02 1.02




Young’s modulus changes linearly with the density. On
the other hand, the Young’s modulus changes with the
second power of the relative density for structures and
loading directions with bending dominated strut defor-
mation [3]. From the present results in Table I it is
obvious that the governing deformation mechanism for
SC changes with direction. In the principal directions
stretching is the prevailing deformation mechanism,
because struts continuously pass through in these di-
rections. For the [011] and [111] direction the density
exponent increases, indicating a deformation mecha-
nism dominated by strut bending.

For GA the density exponent is nearly two in the prin-
cipal directions, reflecting the fact that in these direc-
tions the structure is bending dominated. The density
exponent decreases for the [011] and [111] directions to
1.74 and 1.76, respectively. Thus, bending is the dom-
inant but not the exclusive deformation mechanism in
these directions.

BCC and the RBCC exhibit a density exponent close
to one for the directions shown. Stretching is the princi-
pal mechanism, as a consequence of the diagonal struts
oriented in favor.

5.2. Directional dependence of the Young’s
modulus

The directional dependence of the Young’s moduli of
the structures is derived from the elasticity tensors of
the continuum element based unit cells. This is done
for structures with a relative density of 10%. Figs 3
and 4 show the directional dependence of the Young’s
moduli, £*, normalized by the Young’s modulus, Ej,
of the bulk material in the (100) and (110) plane,
respectively.

SC exhibits high stiffness in the principal directions
governed by axial strut loading. For deviations from the
principal directions bending deformation of the struts
is initiated. The latter mode gives rise to a much more
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Figure 3 Comparison of the normalized Young’s modulus in the (100)
plane for all structures with a relative density of 10%.
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Figure 4 Comparison of the normalized Young’s modulus in the (110)
plane for all structures with a relative density of 10%.

compliant behavior and the normalized Young’s mod-
ulus decreases rapidly.

For the bending dominated GA the principal direc-
tions are the stiffest directions, too. Deviations from
the principal directions give rise to deformations of ad-
ditional struts (the ones aligned with the cube’s edges)
resulting in lower stiffness. For almost all directions the
normalized Young’s modulus is much lower compared
to the other structures.

Different behavior is shown by BCC, where the
stiffest direction of this structure is the [111] direction.
For RBCC the direction dependence of the normalized
Young’s modulus is less pronounced than for all other
investigated structures. The directions with the highest
value for the normalized Young’s modulus are the prin-
cipal directions. For both structures the more uniform
spatial orientation distribution of the struts results in
less anisotropy. Such more uniform 3D networks carry
loads rather by axial strut forces and prevent local strut
bending, as discussed in the previous section.

5.3. Comparison of FEM modeling
techniques

The presented FEM modeling techniques are compared
by means of the normalized Young’s moduli for several
directions of the investigated structures at 10% rela-
tive density. Figs 5 to 7 show the normalized Young’s
moduli in the (100) plane predicted by the following
approaches; continuum element based unit cell models
(dashed bold lines), beam element based unit cell mod-
els with (solid thin lines) and without (dashed thin lines)
stiffness adaptation, as well as beam element based fi-
nite structure models with (open symbols) and without
(filled symbols) stiffness adaptation in the vicinity of
the vertices. The approximation of the density is done
for all beam element based models.

The modeling of the density and the adapation of
the vertex stiffness, is of approximative character. A
unique treatment has been chosen for evaluating that
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approach and to learn about its effect on various struc-
tural architectures. Two effects on the elastic behavior
are involved, being more or less pronounced at differ-
ent situations. First, the density approximation yields
some gaps and/or overlaps, and, consequently, a few
percent error for the strut diameter at fixed density.
Second, the stiffness of the vertex tends to be overesti-
mated for some local loading scenarios, like stretching
in direction of the strut axis. It was not attempted to
find a best fit for each individual structure (and maybe
each loading direction and density), but rather to gain
general knowledge from such an approach.
Considering both unit cell models for SC (Fig. 5) it
can be seen that the stiffness in the principal directions
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Figure 5 Comparison of modeling approaches in terms of the normal-
ized Young’s modulus in the (100) plane for SC with a relative density
of 10%.
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Figure 6 Comparison of modeling approaches in terms of the normal-
ized Young’s modulus in the (100) plane for BCC with a relative density
of 10%.
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Figure 7 Comparison of modeling approaches in terms of the nor-
malized Young’s modulus in the (100) plane for RBCC with a relative
density of 10%.

is overpredicted by the beam element model. This is
caused by the rigid domains of the straight through
struts in these directions. Deviating from the principal
directions, the differences of the stiffness predictions
decrease. For BCC (Fig. 6) and RBCC (Fig. 7) the
stiffness predictions by the unit cell models coincide.

In contrast to the structures discussed before, beam
unit cells without an adaptation of stiffness are com-
pared to the continuum unit cells for GA, since this
structure exhibits only vertices connecting three struts.
Due to the high number of vertices in this structure a
minor stiffening effect due to material aggregation in
the vertices is neglected. On the other hand, stiffness
adaptation leads to an pronounced overstiffened behav-
ior of the beam element unit cell. This fact is shown in
terms of the finite samples with applied stiffness adap-
tation, Fig. 8 (open symbols). In Fig. 8 it can be seen
that the beam element unit cell reacts more compli-
ant than the continuum element based unit cell model,
indicating that the stiffness of the vertices is underes-
timated. The high number of vertices and short struts
lead to less accuracy of the density approximation, also.
The estimated strut radius is too large, increasing the
stiffness of the structure and compensating partly for
the omitted stiffness adaptation of the vertices.

The beam element models with and without adap-
tation of the stiffness at the vertices are compared in
terms of the 8 x8x 8 finite structure models. In Figs 5
to 7 (open and filled circles) the values of the normal-
ized Young’s moduli for three different directions are
shown. It can be seen that the finite structure mod-
els without rigid domains react less stiffly. The devi-
ation between the two beam element models depends
strongly on the topology of the structure and the gov-
erning deformation mechanism, respectively. For di-
rections in which bending is the governing mechanism,
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Figure 8 Comparison of modeling approaches in terms of the normal-
ized young’s modulus in the (100) plane for GA with a relative density
of 10%. Note that the predictions for the finite samples without rigid
beams are almost identical.

like [011] of SC, [011] of BCC, and all directions of
GA the deviation is higher than for stretching domi-
nated directions.

5.4. Influence of the specimen size

Finite samples consisting of different numbers of base
cells are modeled by beam elements with adaptation
of stiffness. The results are compared to the continuum
unit cell models in order to assess the required testing
specimen size, i.e. the effect of the free faces as well
as the effect of the top and bottom plates. The latter
introduce additional constraints giving rise to higher
stiffness, the first ones result in a decrease of the stiff-
ness.

Evaluation is done for three directions by means of
the normalized Young’s modulus. Finite samples con-
sisting of 5x5x5, 8x8x8, and 11x11x11 base cells
are analyzed. Figs 5 to 7 show a comparison of the
simulation results of the various finite sample sizes for
the different structures.

It can be seen that the results of the various samples
sizes correspond well for all structures. General rules,
however, regarding the size of testing specimens and for
extrapolation to properties of infinite structures cannot
be derived from these investigations, since the surface
effects strongly depend on the structure’s architecture
and on the governing deformation mechanisms in the
considered direction.

It is noted, that the inclined direction is chosen as
[021] leaving sample surfaces with minimum amount
of dissected base cells. Arbitrary inclinations are ex-
pected to give rise to a more pronounced influence of
the surfaces.

5.5. Comparison to experimental results
Fig. 9 shows the results of the continuum element based
unit cells and the 8 x 8 x 8 finite structural models with
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Figure 9 Comparison of experimental and simulation results regarding
uniaxial compression in one of the principal directions, relative density
of the structures is 10%.

stiffness adaptation in comparison to experimental re-
sults in one of the principal directions [12].

For structures with directionally less sensitive behav-
ior such as BCC, RBCC, and GA the results correspond
very well, whereas for structures with high directional
sensitivity such as SC deviation of the simulation re-
sults is noticeable. For SC the geometric imperfections
that occur during the fabrication process may play a sig-
nificant role, as do experimental conditions. As can be
seen in Figs 3 and 4 small changes in direction lead to a
pronounced decrease of the normalized Young’s mod-
ulus. In addition, geometrical perturbations are also
expected to reduce the stiffness in the principal direc-
tions.

6. Conclusions
Various Finite Element modeling concepts and linear
analyses of regular open cell structures are presented.

Continuum element based unit cell models are uti-
lized as reference models to discuss the applicability of
beam element based models with and without an adap-
tation of stiffness in the vicinity of the vertices. The
accuracy of the beam element models’ results is found
to be dependent on the structures’ geometries and on
the governing deformation mechanisms, respectively.
The mechanical behavior of all structures is represented
very well by the beam models, which are shown to be
suitable for modeling such structures.

Unit cell models are employed for a constitutive char-
acterization of four different structures in terms of den-
sity and directional dependence of their normalized
Young’s moduli. The governing deformation mecha-
nisms are identified. Both the mechanical properties
and the deformation behavior are found to be strongly
dependent on the structure’s architecture, as well as on
the loading scenario.

Finite samples consisting of different numbers of
base cells are simulated to investigate the influence of
free surfaces and load introduction. Both influences
strongly depend on the structures architecture and on
the sample orientation, so that no general rule regarding
the specimen size can be derived from these results.

The results of the simulations are compared to exper-
imental results by means of uniaxial compression tests.
It is shown that for structures with rather high direc-
tional sensitivity imperfections play a significant role
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and the results deviate. For all other structures the sim-
ulation results agree very well with the experimental
results.
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